
FACULTY OF ENGINEERING
Department of Computer Engineering
MATH 240 | Course Introduction and Application Information
Course Name |
Probability for Engineers
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
MATH 240
|
Fall
|
3
|
0
|
3
|
6
|
Prerequisites |
|
|||||||
Course Language |
English
|
|||||||
Course Type |
Required
|
|||||||
Course Level |
First Cycle
|
|||||||
Mode of Delivery | - | |||||||
Teaching Methods and Techniques of the Course | Lecture / Presentation | |||||||
Course Coordinator | ||||||||
Course Lecturer(s) | ||||||||
Assistant(s) |
Course Objectives | This course aims to introduce students the theory of probability and its applications to engineering problems. |
Learning Outcomes |
The students who succeeded in this course;
|
Course Description | In this course some important theorems about probability are investigated. In addition, applications of random variables and their probability distributions are discussed. |
|
Core Courses |
X
|
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES
Week | Subjects | Related Preparation |
1 | Sample space and events | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 55-63. |
2 | Events and counting sample points | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 58-71. |
3 | Counting sample points, probability of an event and additive rules | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 64-79. |
4 | Additive rules, conditional probability of an event | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 76-89. |
5 | Bayes’ rule, Concept of random variable and discrete probability distributions | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Probability”, Chap. 2 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 92-97, 101-106. |
6 | Ara Sınav I | |
7 | Discrete probability distributions and continuous probability distributions | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Random Variables and Probability Distributions”, Chap. 3 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 104-111. |
8 | Joint probability distributions | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Random Variables and Probability Distributions”, Chap. 3 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 114-124. |
9 | Mean and variance of a random variable | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Mathematical Expectation”, Chap. 4 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 131-147. |
10 | Binomial and multinomial distributions | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Discrete Probability Distributions”, Chap. 5 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 163-170. |
11 | Ara Sınav II | |
12 | Binomial and multinomial distributions | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Discrete Probability Distributions”, Chap. 5 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 172-184. |
13 | Uniform, Normal, areas under the normal curve, applications of the normal dist. and exponential distribution | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Continuous Probability Distributions”, Chap. 6 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 191-205. |
14 | Uniform, normal, areas under the normal curve, applications of the normal dist. and exponential distribution | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, “Some Continuous Probability Distributions”, Chap. 6 Probability & Statistics for Engineers and Scientists, 9th Edition (Pearson, 2017), 191-205. |
15 | Semester review | |
16 | Final Exam |
Course Notes/Textbooks | Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability and Statistics for Engineers and Scientists, 9th Edition (United States of America: Pearson, 2017). ISBN-13: 978-0134115856 |
Suggested Readings/Materials | William Navidi, Statistics for Engineers and Scientists, 5th Ed. (Mc-Graw Hill, 2019) ISBN-13: 978-1260547887 |
EVALUATION SYSTEM
Semester Activities | Number | Weigthing |
Participation | ||
Laboratory / Application | ||
Field Work | ||
Quizzes / Studio Critiques |
2
|
20
|
Portfolio | ||
Homework / Assignments | ||
Presentation / Jury | ||
Project | ||
Seminar / Workshop | ||
Oral Exams | ||
Midterm |
1
|
30
|
Final Exam |
1
|
50
|
Total |
Weighting of Semester Activities on the Final Grade |
3
|
50
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
50
|
Total |
ECTS / WORKLOAD TABLE
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
14
|
3
|
42
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
2
|
10
|
20
|
Portfolio |
0
|
||
Homework / Assignments |
0
|
||
Presentation / Jury |
0
|
||
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
1
|
30
|
30
|
Final Exam |
1
|
40
|
40
|
Total |
180
|
COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP
#
|
Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
||
1 | To have adequate knowledge in Mathematics, Science and Computer Engineering; to be able to use theoretical and applied information in these areas on complex engineering problems. |
X | ||||
2 | To be able to identify, define, formulate, and solve complex Computer Engineering problems; to be able to select and apply proper analysis and modeling methods for this purpose. |
|||||
3 | To be able to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the requirements; to be able to apply modern design methods for this purpose. |
|||||
4 | To be able to devise, select, and use modern techniques and tools needed for analysis and solution of complex problems in Computer Engineering applications; to be able to use information technologies effectively. |
X | ||||
5 | To be able to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or Computer Engineering research topics. |
|||||
6 | To be able to work efficiently in Computer Engineering disciplinary and multi-disciplinary teams; to be able to work individually. |
|||||
7 | To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions. |
|||||
8 | To have knowledge about global and social impact of Computer Engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of Computer Engineering solutions. |
|||||
9 | To be aware of ethical behavior, professional and ethical responsibility; to have knowledge about standards utilized in engineering applications. |
|||||
10 | To have knowledge about industrial practices such as project management, risk management, and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development. |
|||||
11 | To be able to collect data in the area of Computer Engineering, and to be able to communicate with colleagues in a foreign language. ("European Language Portfolio Global Scale", Level B1) |
|||||
12 | To be able to speak a second foreign language at a medium level of fluency efficiently. |
|||||
13 | To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Computer Engineering. |
X |
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
NEWS |ALL NEWS

Home kitchens will be like ‘restaurant kitchens’
Esra-Melis Sarıhan sisters, graduates of Izmir University of Economics (IUE), developed an application called ‘Yedir’ that will bring home cooks and food

She became one of the 10 most successful women in the Middle East
Melda Akın, a graduate of Department of Computer Engineering, Izmir University of Economics (IUE), was named one of the 10 most successful

Watch out for pandemic scams
Fake job postings that promise people to work from home have been the latest tactic of scammers, who are looking for ways