FACULTY OF ENGINEERING

Department of Computer Engineering

MATH 153 | Course Introduction and Application Information

Course Name
Calculus I
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
MATH 153
Fall
2
2
3
6

Prerequisites
None
Course Language
English
Course Type
Required
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course Discussion
Problem Solving
Lecture / Presentation
Course Coordinator
Course Lecturer(s)
Assistant(s)
Course Objectives This course aims to built fundamentals of calculus and its applications for engineers
Learning Outcomes The students who succeeded in this course;
  • find limits of functions.
  • investigate continuity of functions.
  • compute derivatives of explicit and implicit functions.
  • solve related rates problems.
  • classify critical points of functions.
  • sketch graphs of functions.
  • solve extreme value problems.
  • compute areas of plane regions.
Course Description Calculus I provides important tools in understanding functions of one variable and has led to the development of new areas of mathematics.

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
X
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Graphs of quadratic functions, Polynomials and rational functions, the trigonometric functions, examples of velocity, growth rate and area Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018)Section P3, P6, P7, 1.1
2 Limits of Functions, limits at infinity and infinite limits Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 1.2, 1.3
3 Continuity, tangent lines and their slopes Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 1.4, 2.1.
4 The derivative, differentiation rules, the chain rule, derivatives of trigonometric functions Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 2.2, 2.3,2.4, 2.5.
5 Higher-order derivatives, the mean value theorem Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 2.6, 2.8.
6 Implicit differentiation, inverse functions, Exponential and logarithmic functions Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018)Section 2.9, 3.1, 3.2
7 Midterm Exam
8 The natural logarithm and exponential. The inverse trigonometric functions Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 3.3,3.5
9 Related rates, indeterminate forms Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 4.1, 4.3.
10 Extreme values, concavity and inflections Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 4.4, 4.5
11 Sketching the graph of a function, extreme value problems Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 4.6, 4.8
12 Extreme value problems properties of the definite integral.The fundamental theorem of calculus Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) , Section 4.8, 5.4.5,5
13 The method of substitution Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018) Section 5.6
14 The method of substitution, areas of plane regions Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition , (Pearson, 2018)Section 5.6, 5.7
15 Semester review
16 Final exam

 

Course Notes/Textbooks

"Calculus, A complete course" by Robert A.Adams & Christopher Essex, Publisher: Prentice Hall, 9th edition,2013. ISBN-13: 978-0134154367.

 

Suggested Readings/Materials

''Calculus, Early Transcendentals'',James Stewart, Cengage Learning; 7th edition, 2010.ISBN-13:978-0538497909

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
6
30
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exams
Midterm
1
30
Final Exam
1
40
Total

Weighting of Semester Activities on the Final Grade
7
60
Weighting of End-of-Semester Activities on the Final Grade
1
40
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
2
32
Study Hours Out of Class
14
3
42
Field Work
0
Quizzes / Studio Critiques
6
5
30
Portfolio
0
Homework / Assignments
0
Presentation / Jury
0
Project
0
Seminar / Workshop
0
Oral Exam
0
Midterms
1
14
14
Final Exam
1
30
30
    Total
180

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have adequate knowledge in Mathematics, Science and Computer Engineering; to be able to use theoretical and applied information in these areas on complex engineering problems.

X
2

To be able to identify, define, formulate, and solve complex Computer Engineering problems; to be able to select and apply proper analysis and modeling methods for this purpose.

3

To be able to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the requirements; to be able to apply modern design methods for this purpose.

4

To be able to devise, select, and use modern techniques and tools needed for analysis and solution of complex problems in Computer Engineering applications; to be able to use information technologies effectively.

5

To be able to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or Computer Engineering research topics.

6

To be able to work efficiently in Computer Engineering disciplinary and multi-disciplinary teams; to be able to work individually.

7

To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions.

8

To have knowledge about global and social impact of Computer Engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of Computer Engineering solutions.

9

To be aware of ethical behavior, professional and ethical responsibility; to have knowledge about standards utilized in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management, and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

To be able to collect data in the area of Computer Engineering, and to be able to communicate with colleagues in a foreign language. ("European Language Portfolio Global Scale", Level B1)

12

To be able to speak a second foreign language at a medium level of fluency efficiently.

13

To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Computer Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


SOCIAL MEDIA

NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.